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Abstract

Convection in a horizontal fluid layer of a binary mixture is studied analytically and numerically. In the formulation of the problem,
use is made of the Boussinesq approximation. Neumman boundary conditions are specified for the temperature on all walls of the cavity.
In addition of the Soret contribution, a shear stress, s, is applied on the upper free surface of the layer. The flows are found to be depen-
dent of the Darcy–Rayleigh number, RT, the Lewis number, Le, the solutal to thermal buoyancy ratio, u, the shear stress, s and the
thermal boundary conditions. Numerical results for finite amplitude convection, obtained by solving numerically the full governing equa-
tions, are found to be in good agreement with the analytical solution based on the parallel flow approach. For given sets of the control
parameters, the occurrence of multiple steady state solutions is demonstrated. The existence of subcritical bifurcations for both stabiliz-
ing and destabilizing mass flux is also demonstrated.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The existence of convection in double-diffusive systems,
in which two substances, e.g. heat and salt, diffuse at differ-
ent rates, was first recognized in the late 1950. Since then,
this phenomena has been studied extensively due to the fact
that its importance has been recognized in fields as diverse
as geophysics, astrophysics, ocean physics and industrial
processes [1–4].

The first study concerning double diffusion in a binary
fluid seems to be due to Nield [5]. Relying on the linear
stability theory, the onset of motion in an initially motion-
less, stable concentration stratified horizontal fluid layer
heated from the bottom was predicted by this author. Later
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Veronis [6] and Baines and Gill [7] also relied on linear sta-
bility theory to determine the thresholds of convection for
various boundary conditions. Non-linear stability theories
have also been used by Veronis [8], Huppert and Moore
[9] and Knobloch and Proctor [10] to predict the thresh-
olds for finite amplitude convection. Numerical results
concerning thermohaline convection in a horizontal layer
have been obtained by a few authors (see for instance
[11–13]).

All the above studies are concerned with the effect of
the regular diffusion of each component (heat and salt)
on convection. However, in a wide variety of natural
and industrial situations, besides the usual diffusion,
cross-diffusion between the two agents may also be impor-
tant. This phenomena, known as the Soret effect, has been
relatively less studied despite its importance in the stability
and convection in a fluid layer of a binary mixture. A
recent review on the literature in this area is given by Joly
et al. [14].
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Fig. 1. Geometry of the physical problem.

Nomenclature

A aspect ratio of the enclosure, L 0/H 0

a lateral heating intensity
b bottom heating intensity
CS dimensionless concentration gradient in x-direc-

tion, Eq. (16)
CT dimensionless temperature gradient in x-direc-

tion, Eq. (15)
D mass diffusivity
DS Soret diffusivity
g gravitational acceleration
H 0 height of the enclosure
j 0 constant mass flux per unit area
k thermal conductivity of the fluid
L 0 width of the cavity
Le Lewis number, a/D
Nu Nusselt number, Eq. (13)
Pr Prandtl number, m/a
q 0 constant heat flux per unit area
RT thermal Rayleigh number, gbT0DT 0H 03=ðkamÞ
S dimensionless concentration, ðN � N0Þ=DN
Sh Sherwood number, Eq. (13)
t dimensionless time, t0=ðrH 02=aÞ
T dimensionless temperature, T 0 � T 0

0

� �
=DT 0

DT 0 characteristic temperature, q 0H 0/k
DN characteristic dimensionless concentration,

�N0(1 � N0)DT 0DS/D

(x,y) dimensionless coordinate system, x 0/H 0, y 0/H 0

(u,v) dimensionless velocity components, u0=ða=H 0Þ,
v0=ða=H 0Þ

Greek symbols

a thermal diffusivity, k/qC
bN solutal expansion coefficient
bT0 thermal expansion coefficient
u buoyancy ratio, bNDN=bT0DT 0

m kinematics viscosity of fluid
q density of fluid
qC heat capacity of fluid
s 0 shear stress
W dimensionless stream function, W 0/a

Superscript
0 dimensionless variable

Subscripts

C refers to the center of the cavity
S solutal
T temperature
0 reference state
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Recently, the Soret effect on convection in a horizontal
layer of fluid has been investigated both analytically and
numerically by Mahidjiba et al. [15]. The influence of var-
ious hydrodynamic boundary conditions imposed on the
horizontal walls of the layer was studied. The main purpose
of this work is to extend the above investigation for the
case where a constant shear stress is applied on the upper
surface of the layer. Such a condition, which can be
encountered in practical situations, has been relatively
not studied, particularly in the context of convection of
binary mixtures.

2. Mathematical formulation

In this investigation, convection within a two-dimen-
sional horizontal cavity filled by an incompressible Newto-
nian binary fluid (Fig. 1) is studied. The top and bottom
horizontal boundaries are subject to uniform fluxes of heat
bq 0, per unit area, while the vertical walls are subjected to
heat fluxes aq 0, where a and b are constants. A shear stress,
s 0, is applied on the top horizontal free surface while the
bottom one is assumed to be rigid. In this study, the Soret
effect is taken into consideration. The binary mixture is
modeled as a Boussinesq incompressible fluid, having an
initial uniform concentration N0 with physical properties
assumed constant, except for the density, which varies with
temperature and concentration according to

q ¼ q0 1� bT0 T 0 � T 0
0

� �
� bS N � N 0ð Þ

� �
ð1Þ

where q0 is the reference fluid density at temperature
T 0 ¼ T 0

0 and concentration N = N0, and bT0 and bN are
the thermal and concentration expansion coefficients,
respectively.

The mass transfer, taking in account the Soret effect, is
given by

J 0 ¼ �qDrN � qDSN 0 1� N 0ð ÞrT 0 ð2Þ
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where D represents the mass diffusivity and DS the Soret
effect.

In the present study The Dufour effect, i.e. heat transfer
driven by a concentration gradient, is neglected as usual.
This parameter can be important in binary gas mixtures
but is negligible in binary liquid mixtures [16].

The dimensionless governing equations are the momen-
tum, energy and concentration equations given as

or2W
ot

þ J W;r2W
� �

¼ Prr4W� PrRT

o

ox
T þ uSð Þ ð3Þ

oT
ot

þ J W; Tð Þ ¼ r2T ð4Þ

oS
ot

þ J W; Sð Þ ¼ 1

Le
r2S �r2T
� �

ð5Þ

where J is expressed as J(f,g) = fygx � fxgy. The functions
f and g stand for any physical variable (W, T or S).

The unknown variables are the components (u,v) of the
mass averaged velocity ~V , temperature T and concentra-
tion S. The stream function W, related to the velocity com-
ponents as u = oW/oy and v = �oW/ox, is introduced so
that the continuity equation is automatically satisfied.
The above equations were obtained by using the following
dimensionless quantities:

x; yð Þ ¼ x0; y0ð Þ=H 0 u; vð Þ ¼ u0; v0ð Þ= a=H 0ð Þ t ¼ t0= H 02=a
� �

W ¼ W0=a T ¼ T 0 � T 0
0

� �
=DT 0 DT 0 ¼ q0H 0=k

S ¼ N � N 0ð Þ=DN DN ¼ �DSN 0 1� N 0ð ÞDT 0=D

ð6Þ

where t is the dimensionless time, a the thermal diffusivity
and k the thermal conductivity.

The dimensionless thermal and concentration boundary
conditions are

x ¼ �A=2
oT
ox

¼ oS
ox

¼ �a ð7Þ

y ¼ �1=2
oT
oy

¼ oS
oy

¼ �b ð8Þ

The dimensionless hydrodynamic boundary conditions
for the vertical walls are

x ¼ �A=2 W ¼ 0 ð9Þ

y ¼ �1=2 W ¼ oW
oy

¼ 0 ð10Þ

y ¼ 1=2 W ¼ 0 s ¼ o2W
oy2

ð11Þ

where s = s 0H
02/al is the dimensionless shear stress and

A = L 0/H 0 is the cavity aspect ratio.
It is noted that that the present system is governed by

the thermal Darcy–Rayleigh number, RT, the solutal to
thermal buoyancy ratio, u, the Prandtl number, Pr, the
Lewis number, Le, the heating mode, a and b, the cavity
aspect ratio, A, and the dimensionless shear stress, s. These
parameters are defined as
RT ¼ gbT0DT 0H 03

am
u ¼ bNDN

bT0DT 0 s ¼ s0H 02

al

Pr ¼ m
a

Le ¼ a
D

A ¼ L0

H 0

ð12Þ

It is noted that the thermal coefficient, bT0 , is usually a
positive quantity. On the other hand, the solutal coefficient
bN can be positive (u > 0) or negative (u < 0). For u > 0,
the thermal and solutal boundary forces are both destabi-
lizing. Thus, the two buoyancy components make aiding
contributions. For u < 0 they make opposing contribu-
tions. However, the Nusselt and Sherwood numbers, char-
acterizing the heat and mass transfers, respectively, are
defined by

Nu ¼ 1=DT and Sh ¼ 1=DS ð13Þ

where DT = T(0,�1/2) � T(0,1/2) is the temperature dif-
ference, evaluated at x = 0, between the two horizontal
boundaries. DS = S(0,�1/2) � S(0,1/2) is the concentra-
tion difference. In the above equations Nu represents, as
usual, the heat transfer across (DT) the walls of the cavity
resulting from the combined action of convection and
conduction. However, because the walls of the cavity are
impermeable, Sh does not have its usual significance.
Here, it is rather related to the concentration distribution
within the cavity induced by the Soret effect and by
convection.

3. Numerical solution

To solve numerically the governing equations, a control
volume approach is used. The SIMPLER algorithm is
employed to solve the equations in primitive variables.
Central differences are used to approximate the advec-
tion-diffusion terms (see Mahidjiba et al. [15] for more
details). The criteria of convergence are to conserve mass,
momentum energy and species globally and locally, and
to insure convergence of pre-selected dependent variables
to constant values within machine error at each time step.
The difference obtained with these grids was less than 1% in
Nu, Sh and WC. Thus, most of the calculations presented in
this paper were performed using a 61 · 181 grid. The solu-
tion is assumed to be converged when the error is less than
10�7. All results presented here were obtained for A = 12
and Pr = 1.

4. Analytical solution

For the case of an infinite layer, the problem can be
solved analytically by using the parallel flow approxima-
tion in the center of the cavity. The following transforma-
tions are introduced

Wðx; yÞ � WðyÞ ð14Þ
T ðx; yÞ ¼ CTxþ hTðyÞ ð15Þ
Sðx; yÞ ¼ CSxþ hSðyÞ ð16Þ
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where CT and CS are unknown constants associated,
respectively, with the temperature and the concentration
gradients in x-direction. hT and hS are, respectively, the
temperature and concentration profiles in the vertical direc-
tion (see, for instance [17]).

Substituting Eqs. (14)–(16) into Eqs. (3)–(5), yields the
following set of equations:

d4W
dy4

¼ W0 where W0 ¼ RT CT þ uCSð Þ ð17Þ

d2hT
dy2

¼ CT

dW
dy

ð18Þ

d2hS
dy2

� d2hT
dy2

¼ CSLe
dW
dy

ð19Þ

According to Kimura and Bejan [18], the boundary
conditions in x-direction can be approximated by an
equivalent energy flux condition in x-direction for the
temperature and concentration, given by

CT þ a ¼
Z 1=2

�1=2

uhT dy ð20Þ

CS � CT ¼ Le
Z 1=2

�1=2

uhS dy ð21Þ

The analytical resolution of Eqs. (17)–(19), subject to
boundary conditions (7)–(11), gives

W x; yð Þ ¼ 1

24
W0y4 �

W1

2
y3 � 3W3

4
y2 þW1

8
y þW2

8

� �
ð22Þ

T x; yð Þ ¼ CTxþ
CT

24

W0

5
y5 �W1

8
y4 �W3

4
y3

�

þW1

16
y2 þW2

8
y
�
� by ð23Þ

S x; yð Þ ¼ CSxþ
LeCS þ CTð Þ

24

W0

5
y5 �W1

8
y4 �W3

4
y3

�

þW1

16
y2 þW2

8
y
�
� by ð24Þ

where W1 = W0 � 12s, W2 = W0 � 6s and W3 = W0 � 4s.
The unknown constants CT and CS can be found by

substituting Eqs. (22)–(24) into Eqs. (20) and (21) and
performing the resulting integrations. They are given by

CT ¼ b1c� b2sþ að Þ
1þ b2sZ=5þ b3c2

ð25Þ

CS ¼
CT 1� Le b2sZ=5þ b3c

2b cf g þ Le b1c� b2sð Þ
1þ Le2 b2sZ=5þ b3c2½ �

ð26Þ

where c = W0/24, b1 = 3b/40, b2 = 1/48, b3 = 19/(4 · 630)
and Z = (s/7 � c).

Upon combining the above equations with the definition
of W0 it is readily found:

A0 þ A1cþ A2c
2 þ A3c

3 þ A4c
4 þ A5c

5 ¼ 0 ð27Þ

where
A0 ¼ 1225aRT N þ1ð Þþ35b2RT

	
35 N 1þLeð Þþ1½ �s:

þaLe Le�Nð Þs2þb2Le
2s3



A1 ¼
1225 24�b1RT N Leþ1ð Þþ1ð Þ½ �þ245ab2RTLe N �Leð Þs
þ35b2 24þLe2 24�RT 7b2þb1ð Þð Þ

� �
s2þ24b2

2Le
2s4

 !

A2 ¼
1225aRTb3Le Le�Nð Þþ245b2 5RTb3þRTb1�24ð ÞLe2�24

� �
s

�336b2
2Le

2s3

 !

A3 ¼
24b2 49b2þ70b3ð ÞLe2s2

1225b3 24 1þLe2
� �

�RTb1Le
2

� �
 !

A4 ¼�11760b2b3sLe
2 A5 ¼ 24 35b3Leð Þ2

The non-linear equation (27) can be solved numerically
by using for instance the Muller�s method for given values
of RT, Le, u, a and s.

From Eqs. (23), (24) and (13), the Nusselt and Sher-
wood numbers are

Nu ¼ 1

1þ CT b2s� b1cð Þ ð28Þ

Sh ¼ 1

1þ LeCS þ CTð Þ b2s� b1cð Þ ð29Þ
5. Results and discussion

As discussed above, the present problem depends upon
the parameters: RT, u, s, Pr, Le, A, a and b. The analytical
model is valid asymptotically for a shallow cavity (A � 1).
Also, the cavity is assumed to be always heated from the
bottom such that b = 1.

5.1. Case of a cavity not heated from the vertical sides
(a = 0)

The influence of the buoyancy ratio, u on the stream
function at the center of cavity, WC, is illustrated in
Fig. 2 for Le = 10. It is observed that the analytical model
(solid and dashed lines) is in general in very good agree-
ment with the numerical results represented by symbols.
Fig. 2a is plotted for s = 0 (no shear stresses applied on
the top of the layer) and for different values of the Rayleigh
number RT (RT = 103, 2 · 103 and 4 · 103). For this situa-
tion, the fluid layer is heated from the bottom and convec-
tion is possible only for RT above a critical value
RT(1 + uLe)P 320. Thus, the critical buoyancy ratio for
the onset of supercritical convection uCr is given by

uCr P 320=RT � 1ð Þ=Le ð30Þ
Fig. 2a indicates for a given u above the critical value

uCr (which depends upon, RT), the flow rotates indiffer-
ently clockwise or counterclockwise. In addition, it is
noticed that with the thermal boundary conditions consid-
ered here (constant fluxes) the resulting flow pattern is uni-
cellular. This is not the case of a cavity heated isothermally
from the bottom for which it is well known that the result-
ing flow pattern is multicellular. In Fig. 2a it is observed
that when the solutal and the thermal buoyancy forces
are both destabilizing (u > 0) convection is always possible
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independently of the value of u. However, for u < 0, i.e.
when the thermal buoyancy forces are destabilizing while
the solutal ones are stabilizing, convection occurs only
when u is greater than a value that depends upon RT. Thus,
convection is possible above u > �0.068 when RT = 103

and above u > �0.092 when RT = 4 · 103. The occurrence
of subcritical bifurcations, for which convection occurs at
finite amplitude, is noted for this situation.

Fig. 2b illustrates the effect of the shear stress, s, for
RT = 2 · 103. For s = 0, the situation is the same as that
discussed above. The flow can rotate indifferently clockwise
or counterclockwise, the two results being perfectly sym-
metrical. For s 5 0, the solutions are, as expected, not
symmetrical. For a given value of s, it is observed that in
general three solutions are possible for a given value of
u. Thus for u > 0, the analytical model predicts the exis-
tence of a clockwise unicellular flow (WC < 0) induced
by the shear stress applied on the upper free boundary.
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Furthermore, it is seen that an anticlockwise unicellular
flow (WC > 0) is also predicted by the analytical model.
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This follows from the fact that for s = 0 both clockwise
and anticlockwise circulations are possible. These two
types of circulation can also be maintained provided that
the value of s is made not too large. Similarly for u < 0
solutions are possible for both WC > 0 or WC < 0. The
circulation induced in the direction imposed by the shear
force will be called natural and that in the opposed direc-
tion anti natural in the following discussion.

The distribution of the velocity component, u, tempera-
ture, T, and concentration, S, profiles in the vertical mid-
plane (x = 0) of the cavity is illustrated in Fig. 3. This
graph has been plotted for RT = 103, Le = 10, N = �0.2
and for different values of the shear stress, s (s = 0, 50
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and 75). The results show that the numerical approach
(dotted symbols) is in excellent agreement with the analyt-
ical model (solid and dashed lines), based on the parallel
flow approximation. The effect of the shear stress is clearly
observed in this figure. The intensity of the flow (velocity)
increases considerably near the upper surface when the
shear stress, s is made larger. The influence of s is found
to be larger on the temperature, T, and than on the concen-
tration, S.

Fig. 4 illustrates the influence of the Rayleigh number,
RT on WC, Nu and the Sherwood number, Sh for s = 50
and u = �0.2 and different values of the Lewis number,
Le (Le = 1, 2 and 10). Here again it is noted that the
numerical and analytical results are in a good agreement.
For RT > 0, it is seen that the natural branch (WC < 0)
exists for any value of the Rayleigh number, the intensity
of WC increasing monotonously with RT. On the other
hand, the antinatural branch (WC > 0) is possible only
when RT is above a critical value that depends upon the
Lewis number, Le. Thus, the antinatural branch is
obtained at RT � 1405 for Le P 10, RT � 1615, for Le =
2 and RT � l1780 for Le = 1. The antinatural solution con-
tains a stable branch (solid line) and an unstable one (dot-
ted line). The numerical model predicts only existence of
the stable branch. Also it is noted that, independently of
the value of the Lewis number, Le, all the natural branches
merge approximately on a same curve. However, the effect
of the Lewis number, Le, on the stream function, WC, is
clearly observed to be more significant for the case of the
antinatural solutions. For sufficiently large value of the
Rayleigh number, RT, (RT > 3 · 103), this effect disappears
and the three curves have again a tendency to merge on a
single curve. The effect of the Lewis number on the heat
transfer (Nu) is also observed to be negligible excepted near
the turning points of the antinatural branches. On the other
hand, in the case of the Sherwood number, the Lewis num-
ber is seen to be more significant.
Nu = 2.182

Ψc = –2.267

Sh = 4.252
(a)

Fig. 6. Contour lines of stream function, temperature and concentration for a
(b) antinatural flow (P2).
5.2. Case of a cavity heated from the vertical sides

(a 5 0)

The effect of the shear stress, s, on the stream function at
the center of cavity,WC is discussed in Fig. 5a for RT = 103,
Le = 10, u = �0.2 and a = 0, 0.1 and 0.2. When a = 0
(dashed line), i.e. when the layer is heated only from below,
the results show the existence of two solutions, clockwise
and anticlockwise circulation. For this situation, which
has been discussed above, the results show that indepen-
dently of the value and the direction of the shear stress,
s, the convective flow is mirror case (antisymmetric) (see
Fig. 5b). The occurrence of unstable branches of solution
between s � �28.5 and 6.56 is indicated by a dashed line.
To examine the effect of the lateral heating, a, on the solu-
tion, different values of a (a = 0.1 and 0.2) are imposed on
the vertical walls of the cavity. It is seen that the natural
solution (anticlockwise circulation, WC < 0) and antinatu-
ral one (clockwise circulation, WC > 0) are also possible
for a range value of the shear stress, s. However, these solu-
tions are not symmetric as for the classical Bénard problem
(a = 0) because of the effect of the lateral heating. For high
values of jsj, all results merge approximately on the same
curve for any value of a.

Fig. 6 illustrates the set of contour lines for W, T and S

obtained numerically for RT = 103, Le = 10, u = �0.2,
a = 0 and s = 10. Fig. 6a corresponds to natural clockwise
circulation (WC < 0) and Fig. 6b to antinatural anticlock-
wise circulation (WC > 0). These two solutions are identi-
fied by P1 and P2, respectively, in Fig. 5b. These results
show that the flow is parallel in the core of the cavity
and the temperature and concentration are linearly strati-
fied in the horizontal direction.

Fig. 7 illustrates the number of solutions obtained for a
given set value of parameters, a (a = 0.05), Le (Le = 10),
RT (RT = 2 · 103), u and s. The existence of three different
regions corresponding to one, tree and five solutions,
Ψc = 1.823

Sh = 4.308

Nu = 1.840

(b)

= 0, RT = 103, Le = 10, u = �0.2 and s = 10: (a) antinatural flow (P1) and
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Fig. 7. Illustration of the number of solutions obtained for the case
a = 0.05, Le = 10, RT = 2 · 103 and for different values of u and s.
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respectively, is observed. The zone of one solution is
obtained for u < 0 or for juj � 1. The case of u < 0 corre-
sponds to the diffusive solution, which prevails for any
value of s. However, we have also a one solution domain
in the case of juj � 1 obtained only for large values of s.
This situation corresponds to the solutal Rayleigh–Bénard
solution where there is only one flow circulation imposed
by the shear stress applied on the free surface. The zone
of five solutions is obtained for juj � 1 and for moderate
values of s. This zone corresponds to the existence of the
pure Rayleigh–Bénard solution (rotating indifferently in
the two directions), the diffusive solution (no flow) and
two unstable solutions corresponding to the subcritical
bifurcations. The last zone corresponds to the region of
three solutions. This region, obtained for the solutal desta-
bilizing situation (u > 0), corresponds to the existence of a
natural branch and an antinatural one with two solutions
(one stable and another unstable).
6. Conclusions

The effect of the shear stress, s, applied on the free upper
boundary of a horizontal fluid layer of a binary mixture,
with Soret contribution, has been studied both analytically
and numerically. Uniform heat fluxes are applied on the
boundaries of the system. Using the parallel flow approxi-
mation, an analytical model is developed. A finite volume
method is used to solve numerically the present problem.
This later is found to depend on the aspect ratio of the cav-
ity, A, Lewis number, Le, Prandtl number, Pr, solutal to
thermal buoyancy ration, u, Rayleigh number, RT, shear
stress, s, and the heating mode (a,b). The main results of
the present study are:
1. An approximate analytical model has been derived to
predict the flow and the heat and mass transfer for the
present problem. The model is found to be in excellent
agreement with a numerical solution of the full govern-
ing equations.

2. In the absence of the lateral heating (a = 0), it is found
that the application of a shear stress destroyed consider-
ably the symmetry of the solution obtained for a pure
Bénard situation (s = 0). For a given set of the govern-
ing parameters the existence of up to five different solu-
tions (three stable and two stable) has been
demonstrated.

3. In the presence of the lateral heating (a 5 0), the results
also indicate the existence of multiple solutions for a
given set of the governing parameters. However, the
symmetry of the flow with respect to jsj = 0 is naturally
destroyed by the lateral heating effects.
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